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Chapter 1

Introduction

Proteins are essential for the structure and function of all living cells and

viruses. Proteins are composed of a polypeptide chain of amino acids joined

by peptide bonds. The sequence of amino acids of a protein is called its

primary structure. The shape protein naturally folds into is called “native

state” and is determined by the sequence of amino acids. There are 20 amino

acids that are commonly found in proteins, each with similar but yet unique

structure. Amino acid chain is arranged locally into a secondary structure by

hydrogen bonding within the peptide backbone. The most common secondary

structure elements (SSEs) in proteins are alpha (α) helix and beta (β) sheet.

The global folding of a single polypeptide chain is called tertiary structure of

protein. Proteins achieve their functions by binding to other molecules, and

tertiary structure controls the existence and placement of binding sites.

With rapid increase in number of protein structures stored in Protein Data

Bank (PDB), there is an immense need for an efficient structural alignment

tool to perform analysis and comparison of three-dimensional structures [14].

Currently, PDB contains more than 32000 structures and 10-20 structures are

being submitted daily. When this number was small, structures were aligned

by visual inspection but with increase in available proteins and recent advances

in structural genomics, need for efficient structural alignment is evident [21].
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It is believed that protein function is determined from its three-dimensional

structure because the binding of proteins to proteins and to ligands depends

purely on the stability and mechanical aspects of three-dimensional structure.

Similar structures may perform similar functions and similarity of structures

can be used for determination of their functions. During evolution process,

structure of protein remains more conserved than sequence and on the basis of

this fact, high similarity of sequences of two proteins almost implies structure

similarity but the opposite is not always true. Therefore, alignment of proteins

structures provides significant clues by identifying the structural similarities

that purely sequence-based methods cannot [12] [26].

Structural information of proteins provides invaluable information about

evolutionary and functional characteristics of protein and it has very impor-

tant application in drug design efforts. In theory, structures of protein are

determined by three methods; by use of experimental information from X-

ray crystallography or NMR spectroscopy, by purely theoretical methods, or

by homology modelling. In foreseeable future, experimental methods are in-

capable of determining the structures of a fraction of billions of proteins in

the world. As far as theoretical approaches to solve protein structures are

concerned, they are lacking in providing high-resolution information about

most of the protein structures [25]. Therefore, techniques of threading and

homology modelling are getting more attention for protein structure predic-

tion/determination. These methods make use of information from proteins

whose structures have already been determined experimentally called tem-

plates to predict structure of a sequence. Structural alignment is an integral

part of threading and homology modelling based protein structure prediction

methods and is used as a “gold standard” for testing of structure prediction

algorithms [23]. Homology modelling consists of four steps: (1) identification

of homologs/template(s); (2) alignment of target with template(s); (3) build-

ing of model based on alignment of target with template(s); (4) evaluation of

the model. Template protein structures are aligned to determine common sub-
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structure to provide a base to the modelled protein structure. To make sure

that resolved structure of new protein is in agreement with those of templates

used, it is aligned with predicted model [23].

There are thousands of proteins with sequence identity less 25% but have

been evolved naturally from the same ancestor into similar structures. In such

cases, threading techniques are used to align protein sequences with known

structures in order to find structural models for the unknown fold of a given

sequence. Development, testing and evaluation of these methods depend on a

library of similar structures and structural equivalence among them. Relevant

structure-to-structure alignments are used to rate the predicted sequence to

structure alignments [27].

1.1 Structural Alignment Problem

Given two proteins A and B, find two subchains P and Q of equal length such

that

1. A(P ) and B(Q) are similar, and

2. Correspondence length |P | = |Q|

is maximal under condition 1. As we are interested in relative position and

orientation of structures of two proteins, the structure of one protein is kept

fixed while that of second one is rigidly transformed by rotating and translating

it without disturbing its internal structure.

Structural alignment problem is structural analogy of well-known sequence

alignment problem but former is performed between known structures of two

proteins and is based on the Euclidean distance between corresponding pairs

of residues whereas later is based on distance between amino acid types.
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Given an optimized separable scoring function, optimal sequence alignment

can always be found using dynamic programming. But it is very difficult to

find out the appropriate set of parameters of the scoring function that results

in similarity between amino acid residues. Substitution matrices are used to

find meaningful equivalences between amino acids and to help to figure out

biologically meaningful sequence alignments.

For the alignment of two structures, it is very hard to find the optimal

alignment because rotation and translation of one structure must be found

to superimpose it onto the other. All solutions to structural alignment are

based on heuristics and therefore only provide an optimal approximate solu-

tion. Similarity in structural alignment is measured by coordinate root mean

square (cRMS) of aligned Cα atoms of protein structures. In addition to cRMS,

number of aligned residues and number and length of alignment gaps are also

used as similarity measures [10].

1.2 Structural Alignment Issues

1.2.1 Is there a unique answer?

The assumption of unique structural alignment cannot be warranted, as it

exists in the field of homology searches and sequence comparison. The fun-

damental difference between these two fields is that when we compare two

sequences of protein we are certain that there is a unique, correct solution but

very rarely we are able to find it. As result of a series of mutations, deletions

and insertions, both proteins have evolved from the same common ancestor

and there is a molecular process to link one sequence into other one. There-

fore, there is a unique, one to one correspondence between positions in each

protein and positions in the common ancestor. If this correspondence could

be known, it could be used to create unique sequence alignment.
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As we are unable to find out this true correspondence, therefore all the

sequence alignments are just approximate solutions depending on our approx-

imate knowledge about the process of evolution of sequences of protein. As

we have discussed earlier, all structural alignment approaches are based on

some heuristic and use simplifications of a scoring function or search proce-

dure. Different methods see unquestionable similarity between structures of

protein in different ways due to their different optimization methods, such as

the dynamic programming, two level dynamic programming and Monte Carlo

minimization. These differences are very few on the level of secondary struc-

ture elements (SSEs), such as helices and strands but become clearly visible

by differing in 2-4 positions if an algorithm tries to align structures at residue

level.

Different similarity measures can also lead to different alignments and

structural alignment optimizing one similarity measure can be close, but by

no means identical, to the alignment optimizing a different similarity measure.

Therefore, for the same pair of proteins, we can have two completely different

alignments generated by two different structural alignment algorithms. That

is why, there is no such alignment that could be used as a standard of truth

to judge and validate other alignment methods, such as threading or sequence

alignment [1].

1.3 Similarity Measures / Scoring Functions

Though most of the algorithms for protein structure alignments use similarity

measures, which differ from each other, there are two main methods to quantify

similarity. In first method, internal distances between corresponding atoms in

the two proteins are calculated. This distances measure is called distance root

mean square (dRMS).

dRMS =

√√√√ 1
N(N−1)

N−1∑
i=1

N∑
j=i+1

(dA
ij − dB

ij)
2
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where dA
ij and dB

ij are the distances between atoms i and j in molecules

A and B, respectively.

The second method which is called coordinate root mean square (cRMS)

uses the actual Euclidean distance between corresponding atoms in the two

proteins under consideration. For that, method must also have to find out

the rigid transformation that optimally superimposes one structure onto the

second one.

cRMS =

√√√√ 1
N

N∑
i=1

(||x(i)− y(i)||2)

Where N is the number of atoms in the list of equivalences, and x and y

are the coordinates of atom indexed i in protein A and protein B, respectively.

Both cRMS and dRMS are based on L2-norm (i.e. the Euclidian norm) and, as

such, they suffer from the same draw back as the residual, X2 , in least-squares

minimization: the presence of outliners introduces a bias in the search of the

fit may be artificially poor because of the sole presence of these outliers. As a

result, RMS is a useful measure of structural similarity only for closely related

proteins. Several other measures have therefore been proposed to circumvent

these problems. We will discuss later a scoring function used in our algorithm

to convert distances between superimposed corresponding Cα atoms to simi-

larity score to be used by dynamic programming to create optimal alignment.

On the basis of above two methods for quantifying similarity, there are two

approaches to address the problem of structural alignment of two proteins. In

case of first approach, heuristic algorithms have been developed to compare

internal distance matrices of proteins consideration. One advantage of such

type of algorithms is that they do not need to find an optimal rigid body trans-

formation to superimpose one structure onto other. DALI, most commonly

used structural alignment server (http://www.ebi.ac.uk/dali/), belongs to this

group. In second approach, heuristic algorithms have been designed to find

optimal correspondence and transformation both simultaneously. Neither first
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nor second approach based heuristics algorithms are able to find an optimal

alignment with respect to any scoring function [11].

1.4 Search Algorithms

Structural alignment of a pair of proteins is an NP hard problem and it is not

possible to find the unique solution in realistic period of time. Therefore, de-

velopment of heuristic algorithms is a good choice. Different algorithms based

on different heuristics may not produce exactly the same solution to a struc-

tural alignment problem. An algorithm can be designed to find either local or

global similarities between two structures but recent approaches are trying to

find a middle path to detect both local and global similarities (equivalences)

and for that several approaches are being used. Among them most impor-

tant ones are; comparison of distance matrices, fragment matching, geometric

hashing, maximal common sub-graph detection and local geometry matching.

Residue equivalences found by these methods are then optimized by dynamic

programming. Some of these methods will be discussed later in little bit more

detail.

1.4.1 Iteration of alternating Superposition

Initial seed alignments/correspondences are found by making pairs of short

fragments (4-6 residues) called aligned fragment pairs (AFPs). Given a set of

seed alignments in the form of AFPs, a superposition algorithm can be used

to find a transformation minimizing an RMSD measure. When one structure

is superimposed onto the other by using the transformation, the distances

between all pairs of atoms (residues) are then calculated to use them in a

scoring matrix or to make new correspondences between residues of structures.

The scoring matrix is used to make an alignment and correspondences to find

a transformation to further minimize RMSD measure. This iteration could be

continued until RMSD is minimized. Rao & Rossmann in [17], Rossmann &
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Argos in [18] [19], Gerstein & Levitt in [4], and Lessel & Schomburg in [14]

have used this approach to align protein structures.

1.4.2 Dynamic programming

Dynamic programming approaches try to find exact solution to alignment

problem but are dependent on the target function, which might not reflect

information about the alignment of other parts of protein molecule. If the

structures are superimposed and we have a scoring scheme to construct simi-

larity matrix, then dynamic programming can optimally align two structures

of protein. Depending on superposition of AFPs, one might ideally like wish to

align the superposed structures to optimize a score but alignment of any two

substructures affects the scoring of alignment of the complete structures and

independency requirement of dynamic programming is violated. To solve this

problem, several algorithms have been proposed to extend dynamic program-

ming [3]. In a heuristic method by Sali & Blundell in [20], several alignments

are made, one for each relation. In residue-by-residue matrix, a residue pair is

assigned a high score if it is found in many relationships based on alignments.

Finally, this matrix is combined with property information to construct a new

matrix to be used by dynamic programming for final alignment. In SSAP

[24], Taylor & Orengo used dynamic programming at two levels called double

dynamic programming. At lower level, many dynamic programming matrices

are calculated and the highest scoring path from each lower level matrix is

propagated to higher level dynamic programming matrix to find over all best

alignment.

1.4.3 Geometric Hashing

Geometric hashing is a method for efficiently finding geometric objects of the

same or similar shape, even though they may be rotated or otherwise trans-

formed. In structural alignment of proteins, the aim of geometric hashing is

to find common substructures. Coordinates of all or a subset of the elements
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(atoms/residues/SSEs) are transformed into local coordinate systems. Set of

elements from the two structures with the same mutual spatial relations are

used to make common substructures. A highly redundant representation of the

structures is used, which is independent of rotation, translation, and sequence

order. Hash tables are used for storing and comparing local geometrical in-

formation, hence the name is called geometric hashing. Three points (x, y, z)

are used to make three-dimensional frame for local reference systems. In [8],

Holm and Sander have proposed a method where geometric hashing is used

with vector representation of SSEs in right-handed coordinate systems. Or-

dered pairs of SSEs are used in coordinate system with origin at midpoint of

first vector directing y-axis along that vector. In [16], Nussinov and Wolfson

also used geometric hashing to align structures in sequence independent way.

1.4.4 Graph Theory

A graph representation of protein molecule enables to apply graph-theoretical

approaches to solve problem of structure alignment. The approach involves

three typical steps: (a) graph representation of protein structure, (b) match-

ing of representation graphs and (c) finding common sub-graph to establish

similarity between structures. Common sub-graph can be created by another

correspondence graph in each node is formed from a corresponding pair of

nodes from representation graphs of proteins under consideration. An edge is

added between two nodes in correspondence graph if the edges in the original

representation graphs are equivalent to a common sub-graph [12] [13]. Three-

dimensional graphs of chemical structures connecting all atoms with distance

labelled edges and with special labels for chiral centres are not applicable to

compare protein structures because of high cost of graph matching [12]. Size

limitation of graph theory can be overcome by using few less elementary ob-

jects as graph vertices. Protein secondary structure elements play important

role in determining functions of a protein and remain conserved during process

of evolution. For identification of folds, SSEs have been used as elementary
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objects (vertices) in many studies [15] [7] [6] [22] [9].
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Chapter 2

Method

2.1 Detection of Fragment Pairs

Structural alignment of protein consists of two basic operations: (a) finding

initial seed alignments/correspondences to be used as anchor points for calcu-

lation of transformation, (b) Superposition of two structures by transforming

target structure onto the reference with the help of an optimal transformation.

Seed alignments consist of protein fragment pairs that are combined in the

following step into quartets to provide anchor points for the transformation

of structures. For a give minimum length m, each fragment of first molecule

is compared with each possible fragment of molecule B. This comparison is

based on the intra-molecular Cα distances of the molecules under consider-

ation. A fragment pair is made if the root mean square (r.m.s) deviation of

corresponding Cα distances is below a threshold value of r1 as given in equation

2.1 [14].

To generate fragment pairs (sometimes are called aligned fragment pairs

(AFPs)), Cα distance matrices of molecules A and B are constructed. Only

those parts of NANB distance matrices are compared which are representatives

of the fragments under consideration.
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√√√√√√√
m1−1∑
i=1

i−1∑
j=0

(a(p1+i,p1+j) − b(f1+i,f1+j))
2

1
2
.m1(m1 − 1)

≤ r1 (2.1)

According to equation 2.1, a fragment A1 from ap1 to aq1 in molecule A

will be matched with another fragment B1 from bf1 to bg1 in molecule B if

r.m.s deviation between corresponding Cα atoms of the fragments is less than

or equal to r1. As Cα distance matrices are symmetrical, elements of main

diagonal plus m1(m1 − 1)/2 of the Cα difference in each distance matrix can

be omitted.

Distances to the adjacent Cα atoms are also not so informative because they

will also be around 3.8 A0 with a small degree of deviation [14].√√√√√√
m1−1∑
i=1

(a(q1+1,p1+i) − b(g1+1,f1+i))
2

m1

≤ r1 (2.2)

According to equation 2.2, a fragment pair can be extend to any number of

Cα atoms as far as relationship of new Cα atom to other Cα atoms in parts

A1 and B1 holds. It means fragment pair A1 and B1 is elongated by Cα atoms

aq1+1 and bg1+1 if equation 2.2 is valid. On each addition of an Cα atom to

fragment pairs, m1 is increased by one and this process continues until 2.2

stands true.

2.2 Combination of Fragment Pairs - Quartets

After having identified and elongated all the fragment pairs Ai|Bj, it is nec-

essary to check if several of these fragment pairs can be superimposed by the

same translation and rotation. For that purpose, two fitting fragments are
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combined into a quartet. A quartet composed of two fragment pairs A1|B1

and A2|B2 is accepted if the following conditions are fulfilled:

i) the participating fragment pairs A1 and A2 or B1 and B2 of molecule A

or B respectively should not overlap. To better differentiate local and

global similarities and to save processing time, a minimum number of

residues can be defined between the fragments A1 & A2 and respectively

B1 & B2.

ii) corresponding parts of Cα distance matrices, representing intra-molecular

Cα distances between atoms within the fragments, should be similar.

√√√√√√
m1−1∑
i=1

m2−1∑
j=0

(a(p1+i,p2+j) − b(f1+i,f2+j))
2

m1.m2

≤ r2 (2.3)

By equation 2.3, a quartet is made by fragments A1, B1, A2 and B2

where fragment A1 ranges from ap1 to aq1, B1 from bf1 to bg1 , A2 from

ap2 to aq2, and B2 from bf2 to bg2 with fragment lengths of m1 and m2:

m1 = q1− p11 = g1− f1 + 1 , and

m2 = q2− p2 + 1 = g2− f2 + 1.

The r.m.s deviation of two spatially distant parts of proteins is usually

expected to be larger than that of a local one. Therefore, the different

values of r1 and r2 can be chosen for detection of fragment pairs and

quartets respectively.

iii) When proteins are superimposed based on quartets, the r.m.s deviation

between fitted pairs should not exceed r2 to avoid enantiomeric frag-

ments.
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2.3 Optimization

2.3.1 Superposition optimization

By this point, we have found several superimposable quartets of fragments.

Each of these quartets provides a superposition by corresponding transforma-

tion (rotation/translations) and these superpositions can further be optimized

based on newly found Cα matches after superposition.

Matching fragments below initially defined minimum length m are not yet

recognized. On the other hand, these may represent a large part of the common

substructure of the two proteins to be compared if, for example, very similar

parts of the proteins are interrupted by insertions and/or deletions. Thus,

beginning with a quartet as an initial seed alignment, a new superposition

is generated including all Cα atoms that have equivalents below a defined

maximum distance r3 in the superimposed second protein structure. After this

additional superposition cycle, it is possible that new Cα atoms get partners

within the maximum distance. So this procedure is repeated until the number

of Cα matches does not increase further. This process is carried out for all

superimposable quartets of fragments and best fragment pairs (with maximum

number of Cα matches greater than m). To save computer-processing time the

optimization procedure is stopped if less than 25 Cα atoms have equivalents

with the reasonable assumption that these quartets/seeds will not give the

best superposition. The flow chart of above described algorithm is shown in

figure 2.1.

While optimization of a superposition, single lonely found Cα matches

are not considered on superposition of two structures because these matches

may result by superposition of two secondary structures in completely differ-

ent orientation. And if such matches are used for further optimization, they

might stop the two structures from reaching at most favourable high scoring

superposition by jamming it at some intermediate state.
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Figure 2.1: Protein3DFit flowchart - old version
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2.3.2 Optimization of best superpositions

Now we have a sorted list of optimized superpositions that were initially super-

imposed based on quartets of fragments. From this list, N best superpositions

are selected for second round of optimization. Best superpositions are further

improved by alternative iteration between two steps;

i) alignment of equivalent Cα atoms by dynamic programming and

ii) optimization (same step that was performed in first round of optimiza-

tion) of superposition based on newly aligned Cα atoms.

The iteration continues until there is no further improvement in the qual-

ity of alignment. The flow chart of extend algorithm with second round of

optimization is shown in figure 2.2.

The alignment of protein structure is desired to meet the contradictory re-

quirements of achieving a lower r.m.s.d. and a higher number of mapped

(aligned) Cα atoms. A quality filter Q given in equation 2.4, originally pro-

posed by Krissinel & Henrick in [12], was used as a measure of quality align-

ment after dynamic programming step to decide whether it should be carried

on further or next best superposition should be tried.

Q =
N2

align

((1 + (RMSD/R0)2)N1N2)
(2.4)

Alignment results in mapping of min(N1, N2) Cα atoms, where N1 and N2

are the number of Cα in the aligned structures. Q score reaches 1.0 only for

identical structures as it can be seen from equation 2.4 (Nalign = N1 = N2

and RMSD = 0) and decrease with decreasing similarity i.e. by increasing

RMSD and/or by decreasing align N . Therefore, higher Q score implies

better alignment of structures.
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Figure 2.2: Protein3DFit flowchart - extended version
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As shown in the flow chart in figure 2.2, during optimization one structure

is superimposed onto the other and then all pairwise distances between each

Cα atom in the first structure and every atom in the second structure are

computed. This results into an inter-molecular distance matrix where each

entry dij corresponds to distance between Cα atom i in the first structure

and Cα atom j in the second one. During alignment, this matrix needs to be

converted into a similarity matrix Sij , similar to the one used in sequence

alignment, by application of the formula in equation 2.5 proposed by Gerstein

& Levitt in [5].

Sij =
M

1 + (
dij

d0
)2

(2.5)

M is the arbitrarily chosen maximum score of a match and it is 20 in our

case. d0 is the distance at which similarity falls to half of its maximum value.

It is taken to be 1.8 A0 in our case. One applies dynamic programming to this

similarity matrix to get optimal equivalences. If this were normal sequence

alignment it would be finished at this point but in structural alignment these

equivalences are used to superimpose two structures by Diamond method [2].
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Chapter 3

Results and Discussions

As it can be seen in figure 2.2 in comparison to figure 2.1 that our basic

approach to align two protein structures is still same but an extension to this

approach has been made to further improve the alignment between structures.

Originally, our algorithm started with a list of seed alignments, called quartets,

found on the basis of intra-molecular distances. Each seed alignment was

then used one by one to superimpose two structures. After superposition, all

the matching Cα atoms were counted and used as seed/anchor points for the

succeeding superposition and this iteration initially started by a quartet seed

alignment continues until Cα matches were increasing. For best superposition,

a binary similarity matrix was built i.e. Sij = 1 if an Cα atom in first structure

matches to an Cα atom in the second one otherwise Sij = 0. And in the end

dynamic programming was applied to the binary similarity matrix to find

optimal alignment.

As shown in table 3.1, though algorithm was able to produce good align-

ments of smaller structures with high sequence similarity, it could not find

comparable optimal alignments in case of big structures with low sequence

similarity.
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Table 3.1: Performance of old version of Protein3DFit against 10 difficult
alignment test

chain 1 chain 2 Protein3Dfit VAST Dali CE
NA/r.m.s.d. NA/r.m.s.d. NA/r.m.s.d. NA/r.m.s.d.

1FXI:A 1UBQ: 39/1.0 48/2.1 - -
1TEN: 3HHR:B 71/1.0 78/1.6 86/1.9 87/1.9
3HLA:B 2RHE: 42/1.1 - 63/2.5 85/3.5
2AZA:A 1PAZ: 52/1.2 74/2.2 - 85/2.9
1CEW:I 1MOL:A 54/1.2 71/1.9 81/2.3 69/1.9
1CID: 2RHE: 59/1.1 85/2.2 95/3.3 94/2.7
1CRL: 1EDE: 100/1.2 - 211/3.4 187/3.2
2SIM: 1NSB:A 129/1.2 284/3.8 286/3.8 264/3.0

1BGE:B 2GMF:A 52/1.1 74/2.5 98/3.5 94/4.1
1TIE: 4FGF: 70/1.1 82/1.7 108/2.0 116/2.9

Figure 3.1: An alignment generated by old version of Protein3DFit
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The quality of alignment in most of alignments was very poor as an example

alignment has been shown in figure 3.1. This example alignment represents

a lot of problems which were so common in most of the alignments we inves-

tigated. Firstly, the part of structure in the start of alignment, which is not

aligned, should have not been made part of alignment. Secondly, randomly

occurring alphabetically labelled matches do not make any sense to be aligned

when are alone and without any sequence. Actually these matches are by

chance matches, which usually result from alignment of two secondary struc-

tures in completely different orientation and ultimately result in binding two

structures in a position, which prevents convergence to an optimal alignment

of two structures. Thirdly, the biggest hindrance in getting quality alignments

with comparable number of aligned Cα atoms and root mean square deviation

(rmsd) was absence of further optimization of alignment of structures by dy-

namic programming. Lastly, it is also important to mention that the number,

which has been shown in the table 3.1 as rmsd for alignments, is actually not

a true rmsd value. It is just average of the distances between only aligned Cα

atoms. To get rid of all of these problems to enhance quality of alignment and

number of aligned Cα atoms with comparable rmsd, we made few extensions

and modifications to the original algorithm, which resulted in very promising

results. The results and all the amendments made have been discussed below

in detail.

As shown in figure 3.2, the optimization step initiated by a seed alignment

(quartet) superimposes (by Diamond method [2]) two structures and tries to

reach at a converged optimal superposition of two structures by iteratively

superimposing two structures on the basis of newly found Cα matches under

a threshold of 2.24 A0 . At the end of optimization of superposition of two

structures, an inter-molecular distance matrix is constructed which contains

distance of an Cα atom in first structure from each of Cα atoms in the second

one.
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Figure 3.2: Optimization and then refinement by dynamic programming
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The inter-molecular distance matrix is converted into a similarity matrix by

using formula in equation 2.5, which assigns a score from 0 to 20 depending

upon the strength of a match. Then dynamic programming is performed on

the similarity matrix to align two optimally superimposed structures. After

alignment, quality function given in equation 2.4 evaluates quality of alignment

on the basis of rmsd and number of aligned Cα atoms under threshold of 2.90

A0 . Threshold of alignment step is a little higher than that of optimization

due to less chances of getting wrong matches after dynamic programming.

Quality function takes into account both contradictory factors of number of

aligned residues and rmsd to decide whether alignment is being improved or

not. Q function provides good quality measure because most of the time when

number of aligned residues is raised rmsd value goes high as well. If quality

function says alignment is getting better, two structures are superimposed and

optimized on the basis of aligned Cα atoms below 2.9 A0.

Above described (figure 3.2) interplay between optimization and alignment

dynamic programming can not be applied to all the seed alignments because

high cost of computation particularly for dynamic programming. The number

of seed alignments is usually in hundreds and if this criterion is applied to each

seed then computation time to generate an alignment of two protein structures

could be in minutes rather than seconds. Therefore, the same scheme to reach

at best optimal alignment by jumping between optimization and alignment

was applied to the M number of best-optimized superpositions as shown in

figure 2.2. The value of M in our case was kept 15 and it resulted in getting

best optimal alignment within less than 10 seconds.

Though a huge large-scale benchmark could not be performed due to lack

of time, extended version of Protein3DFit was tested against 10 difficult test

cases of structures alignment. Results of difficult test case alignments have

been shown in table 3.2. The quality of alignment has also been improved a

lot without lonely standing single matches labelled with alphabet characters as
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Table 3.2: Performance of new version of Protein3DFit against 10 difficult
alignment test

chain 1 chain 2 Protein3Dfit VAST Dali CE
NA/r.m.s.d. NA/r.m.s.d. NA/r.m.s.d. NA/r.m.s.d.

1FXI:A 1UBQ: 59/2.9 48/2.1 - -
1TEN: 3HHR:B 82/1.7 78/1.6 86/1.9 87/1.9
3HLA:B 2RHE: 69/3.4 - 63/2.5 85/3.5
2AZA:A 1PAZ: 80/2.3 74/2.2 - 85/2.9
1CEW:I 1MOL:A 76/2.1 71/1.9 81/2.3 69/1.9
1CID: 2RHE: 91/2.6 85/2.2 95/3.3 94/2.7
1CRL: 1EDE: 181/3.2 - 211/3.4 187/3.2
2SIM: 1NSB:A 265/3.2 284/3.8 286/3.8 264/3.0

1BGE:B 2GMF:A 81/3.0 74/2.5 98/3.5 94/4.1
1TIE: 4FGF: 105/2.6 82/1.7 108/2.0 116/2.9

Figure 3.3: An alignment by extend Protein3DFit
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Figure 3.4: An alignment by old version Protein3DFit

an example of same alignment by old and new extend version of Protein3DFit

is shown in figure 3.3 and 3.4. Not only the number of aligned residues has

been improved but our alignments are in strong agreement with those of Dali

and CE but still we have a performance gap of 10-15% to fill. Now rmsd

value for alignments is also real rmsd rather than average of distances between

aligned residues of two structures.
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